Рассчитываем фундамент на опрокидывание

Расчёт нагрузки на основание

Принимаясь за расчёт фундамента под дом, вначале вычислите нагрузку, которую он будет держать.

Для этого рассчитайте площадь поверхности всех стен, перекрытий и кровли, умножьте площадь каждой конструкции на её удельный вес, который можно взять из нижеприведённой таблицы.

Не забывайте также, что к весу дома позже прибавится мебель, бытовая техника, вещи и, конечно же, люди. Всё это тоже надо учесть, когда производите расчёт нагрузки на основание, поэтому считайте лучше с запасом. Вычисление нагрузки на грунт

Следующим шагом в расчётах является определение нагрузки на грунт. Чтобы понять, сможет ли грунт выдержать здание, необходимо просчитать вес основания дома.

Для этого вычислим объём основания, воспользовавшись математическими формулами, и умножим его на плотность бетона (средние показатели плотности разных видов бетона можно найти в таблице ниже).

Затем проведём несложные вычисления по формуле:

(ВФ+ВД)/Ппф, где ВФ — вес фундамента, ВД — вес дома, Ппф — площадь подошвы основания.

сколько килограмм нагрузки должен нести на себе 1см2 грунта

Теперь важно соотнести требуемую нагрузку на грунт с допустимыми значениями, указанными в таблице

Если полученная в ходе вычислений нагрузка больше расчётного сопротивления заданного типа грунта, нужно увеличить опорную площадь дома, а именно:

  1. Ленточный можно сделать расширенным к основанию (поперечное сечение выглядит как трапеция).
  2. Увеличить ширину фундамента-параллелепипеда.
  3. Для столбчатого основания можно увеличить диаметр столбов или их количество.

Фундаменты на площадках со средним уклоном

Если перепад высот поверхности грунта между крайними частями фундамента равен их расчетному заглублению или несколько превышает его (не более чем на 0,2 м), то уклон можно назвать средним. В этом случае принимать самую высокую поверхность площадки при разработке грунта за базовую было бы не верно, так как подошвы фундаментов в пониженной части площадки оказываются на поверхности или выше поверхности грунта.
При разработке грунта на площадке со средним уклоном базовой является самая низкая поверхность в пределах застройки. Часто на площадках уклон идет по диагонали и тогда базовой является самая низкая поверхность на пересечении осей дома.
В принципе фундаменты «легкого» дома можно было бы установить на подсыпке. Однако сыпучая противопучинная подушка при уплотнении может расползаться. Потребуется дополнительный расход песка прb пониженном качестве уплотнения. Надежным решением является устройство фундамента в пониженном месте в уровне поверхности грунта (рис. 2б).
В этом случае уплотняемая подушка ограничивается стенками траншей (котлованов) и этим обеспечивается качество ее уплотнения.
Траншеи в низкой части площадки откапывают на глубину заложения запроектированной противопучинистой подушки, но не меньше глубины залегания плодородного слоя грунта (рис. 3).

Рис.3. К определению глубины траншей (котлованов) с учетом толщины плодородного слоя грунта: 1 — плодородный слой грунта; 2 — вертикальная отсыпка; 3 — расчетная глубина выемки; 4 — практическая глубина выемки

Все остальные выработки делают на одном уровне. Если разность высот площадки равна принятому заглублению фундаментов, то высоту их не меняют, а необходимое заглубление в нижней части площадки обеспечивают последующей отсыпкой грунта.
Если перепад высот больше заглубления фундаментов, то заглубление следует принять равным величине этого перепада. При этом размеры подошвы фундаментов, учитывая большее заглубление, могут быть уменьшены.
В нашем примере, при фактической разности высот 0,5 м вместо достаточного заглубления в 0,3 м вынужденно увеличиваем его до 0,5 м. В этом случае высота фундамента окажется — 1,3 м и толщина подушки под ним — 0,4 м. Ширину траншей следует уточнить расчетом исходя из условия обеспечения устойчивости фундаментов.
Вертикальную отсыпку грунта производят сразу же после изготовления фундаментов. В пределах траншей для этого используют непучинистый грунт, который хорошо уплотняют. За пределами траншей это делают любым грунтом, в том числе и ранее извлеченным из выработок.
При рассмотренном варианте устройства основания и фундаментов обеспечиваются минимальные объемы земляных работ и расхода бетона, а фундаменты получаются надежными и экономичными.
Если вокруг дома планировку и отмостку выполнить с уклоном в сторону естественного понижения участка, то несколько сократятся объемы земляных работ, но по ряду причин устойчивость фундаментов понизится, а стоимость их возрастет.

Рис.4. Схема промерзания основания под фундаментами при наличии уклона: df— расчетная глубина промерзания; d’f; d»f — глубина промерзания под подошвами фундаментов

Как видно из схемы (рис. 4), при одинаковой глубине промерзания грунта в верхней и нижней частях строительной площадки промерзание под фундаментами окажется разным. В пучинистых грунтах это создаст условия для возникновения неодинаковых деформаций пучения под различными частями дома, чего следует избегать.
Расход бетона увеличивается за счет заглубления фундаментов в нижней части площадки. В нашем примере высота фундаментов возрастает до 1,6 м. Для обеспечения их устойчивости при действии касательных сил пучения приходится увеличивать ширину траншей, что в свою очередь, вызовет необходимость вывоза разработанного грунта. Так что и здесь экономии не получается — уложить грунт дешевле, чем вывезти.
Сохранение уклона целесообразно лишь при строительстве домов с цокольным этажом, особенно при устройстве под домом гаража.

Заливка бетоном

Закончив подготовительные мероприятия, переходим к основному этапу – бетонированию. Кстати, предлагается рассмотреть второй способ армирования подошвы.

Залив в опалубку бетон, раскладываем двумя ровными рядами арматурные прутья, удаляя их от опалубочных стен на пятнадцать сантиметров. Арматуру просовываем под перегородочные элементы из крепежных скоб. Закончив раскладку, штыковой лопатой «топим» металл на двадцать сантиметров в бетонную смесь, аккуратно выполняем «штыкование», чтобы устранить оставшийся внутри бетона воздух.

Как только поверхность бетона поднимется до вбитых по верхней кромке будущей подошвы гвоздиков, П-образные скобы приподнимают на пять – семь сантиметров.

Остается две операции – сооружение подошвы и затирка ее поверхности

Первый этап считается важным и ответственным, шпоночную канавку необходимо прорезать с особым вниманием. Выполняется такая работа сверху, по центральной оси кромки

Шпоночная канавка поможет обеспечить прочность и качество сцепления подошвы и стены фундаментной основы.

Для работы потребуется маленький брусок, который вдавливается равномерно по прямолинейному участку фундаментной подошвы.

Опалубочная система аккуратно демонтируется, все отметки, выполненные на ее щитах, переносятся, чтобы удобней было возводить фундаментные стены.

Теперь предельно ясно, что понимается под названием «подошва фундамента». Остается рассмотреть достоинства и недостатки конструкции.

Считается, что ленточную фундаментную основу на подошве возводят при любых погодных условиях, в том числе – в зимнее время. Такое основание считают универсальным, пригодным для строительства несущих стен из кирпичного или каменного материалов, бетона, древесины.

В качестве недостатка многие отмечают сложный технологический процесс обустройства фундаментной подошвы.

Следует отметить, что подошва заливается под блоки фбс, а при установке свайного фундамента опорные подошвы устраиваются в десяти – пятнадцать местах (по количеству опорных элементов).

Уточнение ширины подушки ленточного фундамента

Окончательно принимаем по каталогу ширину подошвы фундамента. Если ширина подушки фундамента изменилась, уточняем величину расчетного сопротивления грунта R по формуле (7) СНиП 2.02.01-83.

Назначение размеров ленточного фундамента

Определяем давление на грунт основания от веса фундамента N n f и от веса грунта N n гр, кН:

Определяем среднее давление по подошве фундамента от нормативных нагрузок и делаем проверку:

N p — расчетная нагрузка, действующая на верхний обрез фундамента.

Поперечная сила, приходящаяся на расчетную длину фундамента:

l — длина расчетного участка фундамента;

lI — длина консольного участка фундамента:

Находим изгибающий момент, действующий по краю фундаментного блока:

Армирование подушки фундамента

Требуемая площадь рабочей арматуры подушки:

Назначаем шаг рабочих стержней S и определяем количество рабочих стержней в сетке:

b — Ширина подошвы фундамента, мм;

s — Шаг рабочих стержней, принимается 100 или 200 мм.

По сортаменту принимаем диаметр рабочей арматуры.

Проверяем прочность подушки на действие поперечной силы:

φb3 — коэффициент, учитывающий вид бетона, для тяжелого бетона принимается равным 0,6;

φn — Коэффициент, учитывающий влияние продольных сил, для элементов без предварительного напряжения принимается равным 0;

b – Ширина, условно вырезанной полосы, принимается равной 1 м.

Если условие выполняется, то прочность обеспечена.

В следующей статье я расскажу делать ли межевание.

голоса

Рейтинг статьи

Типы фундаментов

В настоящее время применяется несколько типов фундаментов для различных видов сооружений и грунтов.

Ленточный вариант наиболее простой – по сути, это сравнительное невысокое основание, построенное под всеми стенами дома. Оно принимает на себя нагрузку и

распределяет ее по поверхности земли. Такой фундамент, в свою очередь, опирается на плиты. Обычно сооружается для домов от трех этажей и выше. Причем внутреннее пространство используют для обустройства подвального помещения.

Здесь не требуется специальное оборудование и особо сложные технологии. Кроме того, популярность данной конструкции обусловлена простотой, долговечностью и устойчивостью к разрушению.

Конструкция столбчатого фундамента совершенно другая. Представляет она собой совокупность опор, погруженных в землю на определенное расстояние.

Используется для решетчатой (каркасной) либо бревенчатой постройки до 2-х этажей. Данный вид целесообразен в тех местностях, где на почву не влияют температурные изменения.

Плиточный фундамент представляет собой монолитное основание из железобетона, уложенное на дно котлована уплотненное предварительно:

Применяют в тяжелых плотных грунтах для больших многоэтажных сооружений (башни водонапорные, ретрансляционные и пр.).

Расчет оснований стоек по устойчивости на опрокидывание

11.21.Основания стоек по устойчивости на нагрузки, действующие в произвольных направлениях, допускается рассчитывать раздельно в каждой из двух взаимно перпендикулярных вертикальных плоскостей с введением дополнительных коэффициентов условий работы принимаемых по табл. 140. Для круглых стоек вводятся на горизонтальные нагрузки каждого направления, а для квадратных – только на пассивное давление грунта на ригели. Расчет закреплений по устойчивости на опрокидывание выполняется с учетом пассивного отпора грунта и сил трения на боковых поверхностях стойки и ригелей.

0,20,40,60,81,0
Значения1,00,860,770,730,710,71

Примечание. и – опрокидывающие моменты во взаимно пе­рпендикулярных плоскостях.

11.22. В схеме закрепления с банкеткой на участке, расположенном ниже отметки поверхности природного грунта, учитываются те же силы сопротивления, что и для закреплений без банкеток; в пределах банкетки учитывается только сопротивление грунта на ригеле и сила трения на боковой поверхности ригеля.

11.23. Закрепление считается устойчивым, если обеспечивается условие

где Q – расчетная горизонтальная сила на отметке поверхности грунта, полученная в результате расчета опоры, кН (тс);

– коэффициент условий работы закрепления, принимаемый по табл.141;

– предельная горизонтальная сила, приложенная на высоте Н, опреде­ляемая по указаниям п. 11.25, кН (тс);

– коэффициент надежности, принимаемый по указаниям п. 11.9 (11.8).

ГрунтыЗначение коэффициента условий работы закрепления в грунтах со структурой
ненарушеннойнарушенной
Пески:
крупные1,1
средней крупности1,05
мелкие1,1
пылеватые1,151,05
Супеси:
1,31,2
1,41,3
Суглинки:
1,251,15
1,41,25
1,41,25
Глины:
1,51,3
1,51,3
1,51,4

Рис. 83. Схема к расчету стоек на опрокидывание

а – схема нагрузок на опору; б – схема приведения опрокидывающих нагрузок к равнодействующей; в – расчетная схема заделки стойки в грунте

11.24.При расчете закрепления все действующие на опору нагрузки каждого сочетания заменяются силами: поперечной Q, приложенной на высоте от отметки поверхности земли, и вертикальной силой F, приложенной на отметке подошвы стойки.

Нагрузка M, Q и F принимаются по усилиям, действующим в сечении столпила отметке поверхности грунта,: полученным в результате статического расчета опоры.

11.25. Предельная горизонтальная нагрузка в общем случае при наличии верхнего и нижнего ригелей определяется по формуле

где – коэффициент формы эпюры давления грунта на стойку

– пассивное давление грунта на поверхности стойки, кН (кгс), определя­емое по формуле

– расчетная ширина стойки, м (см);

d – глубина заделки стойки в грунт, м (см);

– относительная глубина центра поворота, определяемая по формулам (303)-(306);

– безразмерный коэффициент, определяемый по формуле

– расчетные характеристики грунта: соответственно удельное сцепление, кПа (кгс/см 2 ), угол внутреннего трения, град, и удельный вес, кН/м 3 (кгс/см 3 );

– коэффициент, трения грунта по бетону, принимаемый по табл. 142;

– средняя ширина стоики в грунте, м (см);

– сопротивления грунта верхнему и нижнему ригелю, кН (кгс), оп­ределяемые по формулам (300) и (301);

– расстояние от поверхности грунта до середины высоты верхнего ригеля, м (см)

– расстояние от нижнего основания стойки до середины высоты нижнего ригеля, м (см);

– безразмерные коэффициенты, определяемые по формулам:

-соответственно ширина верхнего и м (см).

Расчетная ширина стойки определяется по формулам (256)-(258). При устройстве сверленого котлована определяется как для грунта ненарушенного сложения; в случае копаного – как для грунта засыпки.

ГрунтыЗначение коэффициента трения f грунта по бетону
Глина твердая0,3
Глина пластичная0,2
Суглинки твердые0,45
Суглинки пластичные0,25
Супеси твердые0,5
Супеси пластичные0,35
Пески маловлажные0,55
Пески влажные0,45

Для стоек диаметром 800мм определяется по формуле

или принимается по табл. 138.

Силы давления грунта на ригели

где – длина верхнего и нижнего ригелей, м (см);

– высота верхнего и нижнего ригелей, м (см).

При расположении ригеля в грунте банкетки (рис. 82) равнодействую­щая давления грунта определится по формуле

где и – то же, что в формуле (268).

Относительная глубина центра поворота определяется из уравнения

Допускается 9 определять по формуле

Если при закреплении с банкеткой получается, что , то принимается .

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.

  1. Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
  2. Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м 2 .
  3. Снеговая нагрузка для Подмосковья по карте равна 126 кг/м 2 . Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м 2 .

Определение типа фундамента для дома

Чтобы правильно выполнить расчет фундамента, нужно учесть такие параметры:

  • тип почвы;
  • глубину залегания подземных вод;
  • толщину промерзания грунта;
  • вес в зависимости от того, сколько было использовано материалов (газобетона, дерева, железобетонных конструкций).

Для определения несущей способности почвы, нужно знать ее тип, степень плотности и увлажненности.

Методы

В домашних условиях надо выявить показатели несущей способности грунта при помощи колышка.

Если он входит в грунт только при помощи лома, перед застройщиком почва с высоким показателем несущей способности, если почва снимается легко без инструмента вручную, перед застройщиком – рыхлый массив с низкими показателями несущей способности.

Блочный фундамент для дома

Чтобы определить влажность почвы, достаточно растереть ее комок в руке. Если соотношение влаги к сухим компонентам высокое, то она скатается, если низкое, то она рассыплется.

Пластичность грунта определяется на глаз: если его комки остаются на лопате, значит он пластичный. Показатели его несущей способности низкие, и он склонен к усадке.

Чтобы осуществить сбор нагрузок на фундамент, нужно посчитать, сколько весит дом, то есть суммировать массу всех использованных материалов.

Для этого необходимо учесть такие параметры:

  1. Общий вес, а также объем конструкции (масса материалов).
  2. Нагрузку от эксплуатации (количество жильцов, мебель).
  3. Атмосферные нагрузки (осадки, ветер).

Какой расчет необходим для основания дома?

Исходя из прямого назначения, которое состоит в равномерной передаче нагрузки сооружения на грунт, необходимо выполнить расчет ширины его опорной части и ее прочность.

Для этого необходимо определить вес сооружения, включая и собственный вес основания.

В расчет на прочность фундамента должны войти и снеговые нагрузки, передающиеся на него от кровли в зимнее время, и вес всего, что будет смонтировано и внесено внутрь помещения (отопительная система, водоснабжение, канализация, мебель и т. п.).

Ветровые нагрузки на невысокое здание в расчет фундамента на прочность не включают. Эти нагрузки учитывают, когда выполняют расчет на прочность такого элемента кровли, как мауэрлат, с помощью которого через стены они передаются на основание дома.

На рис. 1 показаны варианты возможных поворотов и смещений фундамента: а) осадка с поворотом, б) осадка с поворотом и смещением, в) сдвиг по подошве.

Рис. 2. Неправильный расчет прочности фундамента может привести к опрокидыванию всего сооружения.

На мелкозаглубленное основание в зимний период действуют выталкивающие силы, возникающие в результате пучения грунта. Неравномерное распределение этих сил и может привести к потере устойчивости фундамента, показанное на изображении, особенно в том случае, если по каким-либо причинам на основание не было возведено строение. Чтобы в этом случае исключить потерю устойчивости, грунт необходимо защитить от промерзания.

Если произошла потеря устойчивости, когда строительство дома было закончено, следует искать ошибки при расчете требуемой прочности. Но это все же не должно было привести к опрокидыванию всего сооружения, как это показано на рис. 2. Изображен небольшой дом, опрокидывание которого произошло не потому, что не был выполнен соответствующий расчет фундамента. При определении размеров основания и его заглубления, не были учтены физические свойства грунта (на изображении видно, что это песчаный грунт).

Вычисляем вес конструкции дома.

Пример вычисления веса конструкции дома: Вы хотите возвести дом высотой в 1 этаж, 5 м на 8 м, также внутренняя стена, высота пола до потолка составляет 3 метра.

Подставим данные и высчитаем длину стен: 5+8=13 метров, прибавим длину внутренней стены: 13+5=18 метров. В итоге получаем длину всех стен, затем производим вычисление площади, умножим длину на высоту: S=18*3=54 м.

Вычисляем площадь цокольного перекрытия, умножаем длину на ширину: S=5*8=40 м. Такую же площадь будет иметь и чердачное перекрытие.

Вычисляем площадь кровли, умножим длину листа на ширину, к примеру, лист кровельного покрытия имеет длину 6 метров, а ширину 2 метра в итоге площадь одного листа составит 12 м, итого нам понадобится по 4 листа с каждой стороны. Итого получится 8 листов кровли с площадью 12 м. Общая площадь кровельного покрытия составит 8*12=96 м.

Нужен ли расчет основания частного дома на устойчивость?

Фундамент, который под действием внешних сил не опрокинется, не сдвинется в горизонтальной плоскости вместе с грунтом, считают устойчивым. На устойчивость рассчитывают фундаменты таких ответственных элементов, как опоры мостов, заводских труб и т. п.

В отличие от заводских труб расчет фундамента частных домов на опрокидывание можно не выполнять. И причина в том, что эти дома имеют сравнительно небольшую высоту. Если у заводской трубы центр тяжести и равнодействующая силы ветра находятся на значительной высоте от фундамента, в результате чего может образоваться момент достаточный для нарушения устойчивости, то для низкого строения, расчет по этому фактору просто не нужен.

В частном секторе в настоящее время также появляются отдельные строения, которые требуют расчетов их оснований на такое воздействие. Например, ветровые генераторы. На рис. 3 представлен 1 из вариантов основания для такого генератора

Следует обратить внимание на глубину заложения основания. Она явно превышает глубину промерзания грунта

Остальные же размеры на изображении 3 могут служить только для ориентирования и могут отличаться от фактических размеров. Высота вышки – НВ, для надежной работы генератора, зависит от местности, но в среднем ее можно считать равной 20 м.

Как сделать расчет фундамента на опрокидывание

Расчетная схема приведена на рисунке 2.4

Рисунок 2.4 – Схема к расчету проверки на опрокидывание

Для того чтобы фундамент не опрокинулся, должно выполнятся условие:

где ; – коэффициенты, соответственно условий работы и надежности по назначению;

– момент опрокидывающих сил;

– момент удерживающих сил, по формуле (2.19)

При нормальных условиях эксплуатации и возведении фундаментов в соответствии с нормой, его опрокидывание не представляется возможным.

Проверка на плоский сдвиг по подошве

Расчетная схема приведена на рисунке 2.5

Рисунок 2.5 – Схема к расчету проверки на плоский сдвиг по подошве

Для отсутствия плоского сдвига фундамента по подошве должно выполнятся условие:

где ; – коэффициенты, соответственно условий работы и надежности по назначению;

– сдвигающая сила, по формуле (2.21);

– удерживающая сила, по формуле (2.22).

где – коэффициент трения фундамента по грунту

Плоского сдвига по подошве фундамента не будет.

Проверка на выпучивание фундамента

Расчетная схема приведена на рисунке 2.6

Рисунок 2.6 – Схема к расчету проверки на выпучивание фундамента

где – расчетная удельная касательная сила пучения;

– площадь боковой поверхности фундамента в пределах расчетной глубины промерзания;

; – коэффициенты, соответственно условий работы и надежности по назначению

– расчетное значение силы, удерживающей фундамент от выпучивания вследствие трения его боковой поверхности о талый грунт, лежащий ниже глубины промерзания, по формуле (2.24).

где – периметр сечения фундамента в пределах талого грунта;

– расчетное сопротивление i-го слоя грунта;

– толщина i-го слоя талого грунта.

Вывод: фундамент устойчив.

Принцип работы и требования

Столбчатый фундамент представляет собой несколько столбов, объединенных с помощью ростверка (горизонтальная обвязка). Ростверк необходим для совместной работы отдельно стоящих конструкций. Чтобы обеспечить устойчивость и предотвратить опрокидывание, столбы заглубляют в землю. Глубина заложения зависит от нагрузки от здания и характеристик грунта.

Несущая способность обеспечивается за счет опирания на грунт и поверхностного трения. В случае с фундаментом небольшой глубины трение возникает незначительное. Лучше всего данный тип конструкции подходит для возведения деревянного или каркасного дома с высотой два и более этажа. Возведение тяжелых каменных домов на таких фундаментах невозможно. Удельная масса стен здания не должна превышать 1000 кг на метр кубический.

Из-за небольшой несущей способности требуется, чтобы уровень грунтовых вод находился глубже подошвы фундамента минимум на 50 см. При наличии на участке слоя насыпных грунтов, их необходимо удалить и заменить песком средней крупности с послойным виброуплотнением (максимальный слой уплотнения 20 см).

Поделитесь в социальных сетях:FacebookTwitter
Напишите комментарий