Особенности расчета свайного фундамента дома

Оптимальное расстояние между сваями

Винтовые металлические опоры для каркасного или брусового дома устанавливают с шагом не более трех метров. Но нередко его уменьшают до 1-1,2 метра. Данный параметр зависит от суммарной величины нагрузок и свойств грунта. Узнать более точное расстояние помогает расчет, который допускается не выполнять для временных и неответственных строений.

Определяя шаг винтовых опор, следует учитывать длину ростверковых балок, так как обоими концами они должны опираться на оголовок ввинченной трубы. Это касается как каркасного, так и брусового дома

Но в случае устройства бетонного ростверка данный фактор во внимание не принимается

Если в качестве основания дома предусматривается выполнение плитного фундамента, то местоположение винтовых свай определяется проектной документацией. Такая конструкция предполагает чуть более сложный расчет, но принцип остается все тот же – опоры размещаются под несущими стенами или колоннами каркасного дома.

Особенности проведения испытаний винтовых свай

Испытания винтовых опор Винтовые сваи 108 мм под дом испытывают статическими нагрузками с применением следующих методов:

  • Ступенчатой нагрузкой с выжиданием стационарного состояния по вертикальным смещениям на каждой из величин нагружения.
  • Непрерывно увеличивающейся нагрузкой.
  • Знакопеременным или пульсирующим нагружением.

При ввинчивании винтовой сваи в грунт регистрируются следующие параметры: число оборотов, длительность заглубления, осевая пригрузка и крутящий момент. Периодичность записи данных в журнал определяется величиной погружения сваи на каждые полметра.

Пригрузка вдоль оси определяется плотностью грунта и его структурой. Численно она определяется путём деления теоретического числа оборотов сваи к реальному. Если соотношение имеет значение менее 1, то пригрузка повышается, а при большем — снижается. Оптимальным вариантом, который говорит о правильности настройки испытательной установки, считается равенство полученного значения единице.

Посмотрите видео, как проводятся испытания винтовых опор.

Несущая способность винтовой сваи

Основными параметрами, принимаемыми в расчетах при проектировании любого типа фундамента, являются:

  • вес стоящегося сооружения
  • несущая способность грунтов под ним.

Инженерно-геологические изыскания состоят из трех основных этапов, это – полевые работы, лабораторных исследований и технический отчет.

Малоэтажное строительство (до 3-х этажей) под госэкспертизу не попадает и такого рода изыскания проводят самостоятельно.

Несущая способность грунта

ТАБЛИЦА 1 — определения несущей способности винтовых свай

В среднем нагрузка на винтовую сваю не должна превышать 5 тонн

Пластичность (для глины)Расчётное сопротивление грунта (кг/квюсм)Несущая способность винтовой сваи 89×300 при глубине залегания лопасти
1,5 м2 м2,5 м3 м
ГлинаПолутвердая64,75,466,7
Тугопластичная54,24,95,66,3
Мягкопластичная43,74,455,8
Супеси и СуглинкиПолутвердая5,54,45,15,86,5
Тугопластичная4,53,94,65,36
Мягкопластичная3,53,54,24,85,5
ЛёссМягкопластичная12,22,93,64,3
ПескиСредние1599,710,411,1
Мелкие85,66,377,7
Пылеватые54,24,95,66,3
Расчетное значение угла внутреннего трения грунта в рабочей зонеφ1, град.КоэффициентыРасчетное значение угла внутреннего трения грунта в рабочей зоне φ1, град.Коэффициенты
α1α2α1α2
137,82,824189,2
158,43,32623,112,3
169,43,82829,516,5
1810,14,5303822,5
2012,15,53248,431
221573464,944,4
Диаметр ствола5789108114168219219
Стенка3,53,53,54,5868
Диаметр винта200300300300450600600
Длина ствола, мкгкгкгкгкгкгкг
22162390641135366148782419928019
2,52440397746046086167312618030761
32717477150946807185842816133503
43273563560758248222903212338987
53828650070569688259963608544472
643847365803711129297024004649956

Как определить тип грунта

Песок – его видно невооруженным глазом.

Размер песчинок 0,25 — 5 мм — песок считается крупным, до 2 мм, то — средней плотности. Потому как песок не меняет своих свойств при намокании, он является непучинистым.

Супесь — смесь песка с глиной. Глины в ней не более 10%, поэтому этот грунт является малопластичным. При скатывании супеси в шар между ладонями в нем чувствуются песчинки, и он легко рассыпается при надавливании. Из-за высокого содержания песка супесь является низкопористой и менее подвержена пучению, чем глина.

Суглинок также смесь песка с глины, которая составляет в нем до 30 %. Это более пластичный грунт. Скатанный из него шар раздавливается в лепешку с трещинами по краям. Это грунт подвержен пучению из-за большей пористости.

Глина наиболее распространенный грунт в окрестностях Перми. Содержание глинистых частиц в ней более 30%. Она очень пластична и может содержать большое количество влаги. Скатанный из неё шар раздавливается в лепешку без трещин. Глина наиболее всех грунтов подвержена силам морозного пучения.

Торф – является органическим веществом и НЕ является несущим грунтом. Он не редко встречается в окрестностях Краснокамска. В обязательном порядке его надо убирать с места застройки, либо устанавливать фундамент в несущие грунты ниже глубины его залегания.

Определение влажности грунта возможно также визуальным методом. Если просверленное отверстие в грунте с течением времени остается сухим, значит таковым можно считать и грунт. А если же на дне скважины начинает накапливаться вода, то это говорит о высоком уровне грунтовых вод и высокой влагонасыщенности грунта.

Морозное пучение грунтов это неизбежный физически процесс, возникающий при превращении содержащейся в грунте воды – в лёд. Объем льда на 9% больше объема воды при одинаковой массе. Поэтому зимой в увлажненном грунте возникает давление, от расширившегося в порах грунта льда, которое по естественным причинам не может сдвинуть нижние слои грунта. Поэтому при расширении происходит движение грунта вверх вместе с находящимся в нем фундаментом. Как правило, промерзание грунта происходит не равномерно по площади фундамента. Соответственно и силы поднимающие фундамент в его разных частях отличаются по величине, что и приводит к появлению трещин в нем и несущих стенах. Весной соответственно лед тает, и грунт возвращается на исходное место, а неверно спроектированный фундамент нет.

Осадка свайного фундамента

Факторы, которые влияют на осадку фундамента, – это конструкция самой постройки и состав самой почвы. Хотя свайные основания отличаются повышенной стабильностью в любых грунтах, при повышенном содержании глины в них они становятся более пластичными и подвижными. Поэтому в этом случае необходимо тщательно рассчитывать длину свай.

На осадку фундамента влияет масса и размеры несущих стен и внутренних перегородок, наличие арок и т. д. Поэтому она может быть неравномерной с различных сторон строения, но тщательный подбор винтовых свай в соответствии с необходимой в каждом случае несущей способностью позволит избежать проседания конструкции.

При определении осадки считается, что нагрузка равномерно распределена по всему периметру основания, который считают монолитным блоком. Верхняя граница такого условного монолита проходит по оголовкам свайных изделий, нижняя – сквозь их наконечники, а боковые – по крайним рядам винтовых свай. Составленный таким образом разрез фундамента позволяет начертить график уплотняющих напряжений, которые способны выдержать слои грунта.

Допустимые осадки свайно-винтового фундамента приводятся в СНиП 2.02.1-83   и они определяются типом постройки:

  • для панельных и блочных бескаркасных домов осадка максимальная осадка не должна превышать 10 см;
  • для сооружений со стальным каркасом допускается максимальная осадка 12 см;
  • для зданий из железобетона значение предельно допустимой осадки равно 8 см и т.д.

Расчет осадки методом послойного суммирования

Чаще всего осадку фундамента рассчитывают методом послойного суммирования. Он предполагает определение осадки отдельных слоев грунта, на которые давит фундамент.

Более подробный алгоритм расчета по методу послойного суммирования выглядит таким образом (рисунок ):

  1. Строят эпюру (график) Pzp, на которую наносят дополнительные напряжения (уплотняющие давления) на фундамент.
  2. Строят график природных давлений Pϫz, предварительно разделив чертеж графика на слои, при этом hi должно быть меньше 0,4b.
  3. Определяют осадку Si отдельных слоев почвы, складывают эти величины и получают окончательную осадку фундамента по формулам:

Si = hi*mvi*Pzi, S = ΣSi.

Величина mvi вычисляется в соответствии с данными компрессионных испытаний, а Pzi – по соответствующей эпюре как среднестатистическое дополнительное давление в i-м слое почвы.

Если мы знаем модуль общей деформации каждого слоя почвы Ei, то осадку можно рассчитать по формуле S = Σhi*β/ Ei*Pzi, где коэффициент β согласно СНиП равен 0,8.

При использовании этого метода предусмотрена линейная зависимость между деформациями и напряжениями. Слои рассматривают непосредственно под центром фундамента, исходя из графика максимальных уплотняющих давлений

При построении зависимости Pzp не учитывается слоистость напластований, боковые расширения почвы, а напряжения принимаются во внимание только по вертикали. Выбираем уровень глубины, ниже которого деформации грунта по нашему предположению отсутствуют, исходя из соотношения Pzp меньше или равно 0,2Pϫz (при Ei больше 5 МПа)

При этой характеристике меньше 5 МПа Pzp меньше или равно 0,1Pϫz.

Пример расчета свайного поля

Чтобы правильно рассчитать количество необходимых свай для строительства двухэтажного дома размером 6х12 из бруса размером 200х200, необходимо провести следующие расчеты:

  1. Если для строительства необходимо 51,9 м3 бруса, масса одного кубометра которого составляет 800 кг, получаем общий вес бруса: 51,9*800 = 41520 кг.
  2. Нагрузка, которая приходится от одного этажа строения на фундамент (при расчетной полезной нагрузке, зависящей от количества проживающих в доме людей, составляет по нормативам 150 кг/м2), составляет: 6*12*150 = 10800 кг. В случае двухэтажного дома эту нагрузку увеличивают вдвое и получают 21600 кг.
  3. Примерная снеговая нагрузка (при значении норматива 180 кг/м2) составит 6*12*180 = 12960 кг.
  4. Складываем все массы: 41520 + 21600 + 12960 = 83 680 кг.
  5. Если предельная допустимая нагрузка на сваю составляет 2500 кг, делим 83680 кг на 2500 кг и получаем необходимое количество свай – 34 штуки.

Расчет нагрузки и осадки свайно-винтового фундамента не требует специализированных инженерных знаний и доступен любому владельцу дома, который хочет сэкономить на услугах специализированных проектировочных фирм.

Как рассчитать количество винтовых свай?

Правильно выполненные расчеты при проектировании свайно-винтового фундамента – залог надежности всей строительной конструкции. Их осуществление требует знаний и опыта в сфере проектирования и строительства оснований данного типа.

Основные принципы расчета количества винтовых свай

Чтобы грамотно рассчитать количество винтовых свай, следует основываться на следующих принципах:

  1. Для возведения легких заборов не превышайте расстояние между устанавливаемыми сваями в 3-3,5 м.;
  2. Для деревянных заборов, а также заборов из профлиста расстояние не должно превышать трех метров, а при наличии нагрузки ветром – 2,5 метров;
  3. Для деревянных домов расстояние между сваями должно быть не больше 3-х м.;
  4. Для домов из пенобетона, газобетона, пеноблоков и шлакоблоков необходимо устанавливать расстояние для свай не более 2-х метров.

Для расчета количества винтовых свай необходимо:

  1. взять план первого этажа;
  2. обозначить винтовые сваи в каждом из углов фундамента, на стыках внутренних несущих перегородок, внешних стен;
  3. расположить по каждой внутренней, внешней стене необходимое число свай с учетом расстояния, не превышающего 2-3 метра в зависимости от материалов, из которых будет возводиться строение;
  4. остальное пространство заполнить винтовыми сваями с учетом расстояния в 2 или 3 метра;
  5. если будет возводиться печь необходимо учитывать, что она требует минимум 2-х свай;
  6. обозначить винтовые сваи под внешние углы балконов, террас, пристроек;
  7. подсчитать общее число винтовых свай.

Основные показатели при расчете количества свай

При расчете количества свай учитываются два базовых показателя:

  1. общая весовая нагрузка объекта строительства на фундамент;
  2. грузонесущая способность грунта на участке строительства и, соответственно, нагрузка на одну сваю.

Весовая нагрузка рассчитывается следующим образом:

Определяются:
вес всех используемых при строительстве объекта материалов, при этом во внимание берутся значения, которые будет иметь готовый объект;
нагрузка при эксплуатации объекта и снеговая нагрузка – рассчитываются согласно СНиП 2.01.07-85.

Вышеуказанные показатели веса и нагрузки суммируются, полученное значение умножается на 1,1-1,2 – коэффициент запаса.

Грузонесущая способность грунта – показатель, рассчитываемый в индивидуальном порядке на основе данных, полученных при геологическом исследовании участка строительства. Расчеты опираются на нормы СНиП 2.02.03-85. В ряде случаев допустимо не проводить исследование. Такой подход целесообразен при хорошей изученности, стабильности грунта и возможности применения показателя минимальной допустимой нагрузки на одну сваю заданного типоразмера и планируемой глубины залегания винта.

После вычисления общей весовой нагрузки и допустимой грузонесущей способности одной сваи первый показатель делится на второй. В результате получает минимально допустимое количество свай, которое, впрочем, зачастую увеличивается по соображениям повышения надежности конструкции.

Согласно строительным ГОСТам и Сводам Правил, шаг монтажа свай составляет 1,5-3 метра, при этом предусматривается установка свай не только по периметру, но и внутри него. Расположение свай относительно друг друга, а также их количество серьезно зависит от площади строения, а также нахождения зон повышенной нагрузки, которую, например, создает построенная в доме печь. Для таких зон количество свай желательно увеличивать. Расположение свай и их количество отражается на плане – схеме свайного поля.

Расчет каркаса

Должна быть выбрана арматура для фундамента. Расчет ее диаметра производим с помощью СНиП 52-01-2003 «Бетонные и железобетонные конструкции» и вспомогательных таблиц. Сечение продольной арматуры должно составлять не менее 0,1% от сечения конструкции. В нашем случае разрез ростверка: 40 х 30 = 1200 см2. Исходя из этого определяем сечение арматуры: 1200 х 0,001 = 1,2 см2. Смотрим в таблицу на расчетную площадь сечения.

Ищем ближайшее к полученному значение. Как видно, их может быть несколько, потому используем такое правило: при стороне более 3 м (как у нас) сечение арматурного прута должно быть не менее 12 мм2. Соответственно, меньший размер нам не подходит. Кроме того, для каркаса нам нужны минимум 2 ряда как горизонтальных, так и вертикальных. Всего 4. Теперь считаем количество метров, которое необходимо приготовить: 6 х 8 х 4 = 192 м арматуры диаметра 12 мм2.

Для поперечной обвязки используют гладкую проволоку диаметром 6-10 мм.

Пример расчета сваи по формуле 2

По формуле (1) можно определить диаметр свай и их количество, если известен общий вес, Р строения. Можно определить вес, Р сооружения, которые выдержат сваи, то есть решить обратную задачу.

Решим прямую задачу. Примерный вес строения можно определить, если известна этажность, материалы стен и перекрытий, вес кровли.

Площадь грунта, на которую опирается основание сваи, определим через ее диаметр d:

a периметр сваи равен

подставив (4) и (5) в (2), после элементарных преобразований получим:

Пусть глубина погружения сваи равна 3 м и при этом верхний глинистый слой имеет толщину1,5 м, и нижний слой составляет крупный песок. Пусть коэффициент пористости е≤0,55, и в верхнем слое глина находится в мягкопластичном состоянии, то есть показатель текучести IL=0,6.

По таблице 1 определяем расчетное сопротивление глинистых грунтов, fгл=25(2,5)кПа (тс/м 2 ) и по таблице 2 расчетное сопротивление песчаных грунтов, fпес=85(8,5) кПа (тс/м 2 ). По таблице 4 определяем расчетное сопротивление песчаного слоя Rпес=4100(410) кПа (тс/м 2 ). Подставим эти значения в тс/м 2 в формулу (6).

Fd=π[410d 2 /4+d(2,5·1,5+8,5·1,5)]= π[410d 2 /4+d(2,5·1,5+8,5·1,5)]= = π(410d 2 /4+16,5d).

При диаметре d = 30 см=0,3 м, Fd=44,5 т.

При диаметре d = 20 см, Fd= 23т.

Требуемое количество свай N необходимо определять, проверяя условие:

где Р – вес сооружения.

Понятно, что одновременно с решением прямой задачи можно выполнить расчет размера свай.

Для свай, имеющих в сечении квадратную форму со стороной а, формулу (6) необходимо преобразовать, и она примет вид:

Подводя итог, следует отметить, что выполнен, пожалуй, самый простой расчет. И цель его состояла в определении приблизительного количества свай. Намного сложнее выполнить расчет на воздействие сил морозного пучения. А его также необходимо выполнять. Для такого расчета потребуется определять удельную касательную силу морозного пучения, но это можно выполнить только опытным путем. Поскольку фундамент требует серьезного к себе отношения, то целесообразно воспользоваться услугами специалиста.

Как определить коэффициент условий работы сваи

Чтобы определить γс, необходимо воспользоваться следующей формулой:

где γ1 может принимать значения 0,8, 1,0 или 1,2 при расстояниях между осями опор под дом равными 1,5, 2,5 и 5 м соответственно;

γ2 принимается равным 1,0 при нормальных режимах монтажа свай, либо 1,2 — при аварийном и монтажном режиме работы;

γ3 может принимать следующие значения:

  • 1,0 – при промежуточном прямом распределении устройств;
  • 0,8 – для промежуточных угловых, свайных, свайно-угловых, концевых распределениях порталов устройств;
  • 0,7 – для специальных порталов устройств.

γ4 может быть равным 1,0 при использовании грибовидных оснований и анкерных плит с защемлёнными стойками в грунте, либо 1,15 для анкерных плит с шарнирными опорами на основание.

Пример упрощенного расчета

Исходные данные для расчета фундамента под двухэтажный брусовой дом с размерами в плане 6 на 6 метров:

  • грунты на участке — глина;
  • диаметр используемых свай — 133 мм, диаметр лопасти — 350 мм;
  • масса дома, полученная в результате сбора нагрузок от стен, перегородок, перекрытий, полезного и снегового нагружения — 59 тонн.
  • периметр наружных стен — 24 м, внутренних несущих стен нет.

Сначала находится прочность грунта основания. Воспользовавшись приведенной ранее таблицей находим, что для имеющегося типа почвы она составляет 6,0 кг/см². Коэффициент надежности по нагрузке принимаем 1,75 (для обеспечения запаса по надежности). Остается вычислить площадь лепестковой подошвы:

S = (πD²)/4 = 3,14*352/4 = 961,6 см² (значение диаметра лопасти в расчет берется в сантиметрах).

Находим неоптимизированную несущую способность:

F = S*Rо = 961,6*6,0 = 5770 кг.

Вычисляем допустимую нагрузку:

N = F/γk = 5770/1,75 = 3279 кг ≈ 3,3 т.

Для дальнейшего расчета определяем минимальное количество свай, которые способны удержать данный дом:

59 т/3,3т = 17,87 шт, округляем до целых в большую сторону и принимаем в дальнейший расчет 18 шт.

Чтобы завершить вычисления для возведения фундаментов, нужно определить шаг между сваями. Для этого длину стен дома делят на количество опорных элементов:

24 м/18 шт = 1,33 м — максимальный шаг фундаментов.

Получилось довольно большое количество свай для такого небольшого дома, т.к. мы приняли что геологические изыскания не проводились, и пришлось принять γk = 1,75, если провести исследования хотя бы пробным вкручиванием (эталонным), тогда количество свай можно снизить до 12-13 штук, а это существенная экономия. В каждом случае нужно считать что обойдется дешевле — геологические изыскания или самостоятельный расчет и перестраховка по несущей способности.

Определение максимальной нагрузки на сваю — только часть вычислений для проектирования. Как показано выше, на этом расчет не заканчивается. Окончательными результатами вычислений должны стать следующие данные для свай:

  • сечение;
  • длина;
  • шаг;
  • распределение под несущими стенами.

Таблица несущей способности

С учетом представленного ранее расчета становится понятным, что значение несущей способности фундамента на сваях зависит от размеров этих элементов, а точнее от диаметра и длины свая.

Статья по теме: Расчет опалубки для ленточного фундамента

Таблица 1 – Зависимость несущей возможности от размеров винтовых свай:

Диаметр, ммНесущая способность, кгДлина, мм
578002000
762000-30002500
8940002500
10870002500
15095003000

Несущая способность винтовых свай – это очень важный параметр, который определяет нагрузку, которую сможет выдержать конструкция.

О том каковы пропорции состава бетона для фундамента можно узнать из данной статьи.

При вычислении этого параметра необходимо принимать во внимание такие параметры, как несущая способность грунта, диаметр и длина сваи. Выполнить все вычисления можно самостоятельно без привлечения посторонних лиц

Если все расчеты были выполнены верно, то ваш дом прослужит вам в течение длительного времени.

Подробно о свайном фундаменте с ростверком

С одной стороны, ростверк выполняет функцию связного элемента для отдельных свай, с другой – это основа для остальной конструкции здания. Ростверк и сваи условного фундамента объединяются попарно (ленточный тип связки) либо объединяются все оголовки (плиточный тип). Ростверк для дома может изготавливаться из таких материалов:

  • Армированный бетон. Бетонная лента укладывается на оголовки свай, расположенные на уровне земли. Во время проектирования также указываются места прокладывания неглубоких траншей, проходящих вглубь ростверка.
  • Бетонный ростверк подвесного типа. Аналогичный способ, при котором между грунтом и ростверком оставляется зазор. Этот промежуток позволяет компенсировать возможные колебания грунта (в рамках нормы).
  • Ростверк из железобетона. Основой служит двутавр и швеллер (для монтажа под несущие стены СНиП рекомендует) швеллер 30.
  • Деревянные брусья. В последнее время практически не применяются.

Что нужно знать до начала работ:

  1. полную нагрузку, создаваемую весом дома. В расчет берется статическая нагрузка и запас в 15-20% на динамическую нагрузку и неучтенные нагрузки, которые могут возникнуть в дальнейшем. Например, вследствие решения построить мансарду над домом;
  2. особенности грунта. Для определения его несущей способности целесообразно заказать дополнительное исследование;
  3. место размещения грунтовых вод;
  4. шаг установки свай. Этот параметр определяется в процессе расчетов на основании вышеперечисленных. Стандартным считается шаг в 2,5-3 м. для свайного ленточного фундамента. Помимо внешних несущих стен сваи располагаются также под внутренними несущими стенами, в местах пересечения несущих стен (внешних и внутренних), по углам и в местах установки «тяжелых» элементов конструкции, колонн, камина и т.п.

Основные схемы размещения

Существует несколько разновидностей схем расположения свай:

  • Свайное поле.
  • Свайный куст.
  • Свайная полоса.

Свайное поле представляет собой участок с равномерно распределенными по всей площади опорами.

Используется для жилых или вспомогательных построек, обладающих подходящим весом, этажностью и материалом для использования винтовых свай. Свайные кусты применяются для создания опорной конструкции под точечные объекты — вышки электропередач или мобильной связи, колонны, трубы котельных и т.п.

Свайные полосы служат фундаментом для линейных сооружений — ограждений, заборов, набережных и т.п.

При проектировании схемы расстановки опор учитывается конфигурация, геометрические и функциональные особенности всех элементов сооружения. Нередко используются смешанные, или комбинированные схемы расположения свай, когда совместно со свайным полем наблюдаются участки с кустами и полосами.

Необходимо учитывать, что минимальное расстояние между соседними сваями не должно превышать 2 диаметра, а между соседними рядами — 3 диаметра режущих лопастей

Это важно, так как при погружении грунт теряет свою плотность, на восстановление которой уходит большое количество времени

Определение несущей способности сваи

Несущая способность по грунту на вдавливание (кН) забивных висячих свай сплошного поперечного сечения определяют по формуле (см. рис.3.2):

(3.1)

где – коэффициент условий работы сваи в грунтах, принимаемый = 1; – расчетное сопротивление грунта под нижним концом сваи, определяемое по табл.П.7.1(Приложение 7),кПа; – площадь поперечного сечения сваи, м 2 ; – периметр поперечного сечения сваи, м; – расчетное сопротивление того слоя грунта по боковой поверхности сваи, определяемое по табл.П.7.2, кПа; – толщина того слоя грунта, м; – число слоев; – коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи. Для применяемых в курсовой работе забивных свай сплошного сечения .

Суммирование в формуле (3.1) распространяется на все пройденные сваей слои грунта (с учетом размыва).

В пояснительной записке к курсовой работе расчет несущей способности сваи должен сопровождаться расчетной схемой, подобно изображенной на рис. 3.2 с указанием наименований грунтов и всех необходимых размеров и отметок. При подсчете сопротивлений геологические слои основания пройденные сваей разбивают на однородные расчетные слои толщиной не превышающей 2 м. Подсчет сил трения по боковой поверхности сваи сводится в таблицу по указанной на рис. 3.2 форме:

Расчет несущей способности сваи

Номер слоя основанияНаименование грунтаНомер расчетного слоям, м, кПа, кПа × м

Рис. 3.2. Схема и таблица к расчету несущей способности свай по грунту

фундамента с высоким – а, и низким – б, ростверками

Несущую способность сваи на выдергивание из грунта (кН) определяют по формуле:

, (3.1)

где обозначения те же что и формуле (3.1), но = 0,8.

Кроме несущих способностей сваи на вдавливание в грунт и выдергивание из грунта следует установить расчетную нагрузку на сваю из условия прочности ее ствола на растяжение, принимаемую по данным табл. Е.1 приложения Е.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения:Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10169 – | 7568 – или читать все.

93.79.246.243 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)

очень нужно

Особенности

Свайный фундамент представляет собой систему специальных вертикальных опор (свай), связанных между собой горизонтальным элементом (ростверком). Принцип действия такой конструкции заключается в том, что высокопрочная (чаще всего металлическая или железобетонная) свая проходит насквозь нестабильные слои грунта и упирается в твердый пласт.

При этом она способна выдержать в верхней части все неблагоприятные воздействия. Это позволяет сделать надежную опору на очень пучинистых, увлажненных и болотистых почвах, торфяниках, плывунах, а также на тех участках, где грунтовые воды подходят близко к поверхности.

Рассматриваемые опоры, как правило, требуют значительного заглубления, которое очень сложно обеспечить путем рытья ямы. По этой причине невозможно смонтировать столбчатый фундамент, а ленточный и даже монолитный (плитный) тип оказываются малоэффективными и ненадежными.

Установка свай может производиться несколькими способами: бурение скважины, забивание, вдавливанием, вибропогружением или ввинчиванием сваи.

Фундаментная система содержит несколько свай, которые вверху соединяются ростверком. Этот элемент необходим для равномерного перераспределения сжимающих нагрузок на все точки опоры.

Советуем почитать: Как сделать земляной бур своими руками?

Срок эксплуатации

Длительность эксплуатации свайного фундамента зависит от:

  1. правильного выбора вида свай и их качества;
  2. точности расчетов;
  3. соблюдения требований монтажа.

Расчетный срок службы для свайного фундамента на железобетонных сваях составляет 100 лет. На стальных сваях – около 70-ти. Здесь важную роль играет наличие и характер дополнительной обработки металла. Для фундамента из деревянных свай – зависит от породы древесины и условий эксплуатации.

Заключение

Несмотря на малую распространенность свайного фундамента в индивидуальном строительстве, он будет незаменим при необходимости выполнить строительство фундамента в короткие сроки.

Выбор оптимального количества опор по параметрам допустимого сечения

Условный расчет количества свай в фундаменте

Минимальное количество опор для фундаментов с низким ростверком можно посчитать по формуле:

n = KN’I Y k\ F d

Где k – коэффициент, составляет 1,4; N’I − вертикальная нагрузка на фундамент со стороны здания; Fd – несущая способность опоры; Y k – коэффициент надежности, составляет 1,4.

После расчета минимально необходимого количества опор можно начинать делать эскизный проект будущего основания. Расстояние между опорами принимают до 1,5 метра, их обязательно нужно устанавливать на углах пересечения несущих стен и в точках наиболее высокой нагрузки на грунт. Объем строительных материалов рассчитывается индивидуально, исходя из местных условий и характеристик опор.

Предварительное распределение свай по минимальной площади нижней кромки ростверка рассчитывается так:

A min = (bo + 2c)(ao + 2c)

Тут параметры a, b – это ширина и длина опоры, а с – ширина обреза, той части опоры, которая отрезается при выравнивании фундамента по горизонтальной плоскости.

В некоторых случаях целесообразно комбинировать сразу несколько видов свай или увеличивать объем подошвы за счет устройства свайного поля. Его рекомендуется устраивать в тех случаях, когда на единицу площади грунта оказывается значительная нагрузка со стороны здания. Как правило, такие поля монтируют в бетонные стаканы, объем необходимых строительных материалов рассчитывается отдельно, как и марка бетона. Также здесь настоятельно рекомендуется провести расчет допустимой нагрузки на строительные материалы.

Расчет осадки фундамента по второй группе выполняется аналогично расчету осадки фундамента мелкого заложения. Осадка определяется по диаметру и площади подошвы сваи, а также их количества и выбора допустимого материала при растяжении. При этом, если будут запроектированы висячие опоры, тогда деформацию не рассчитывают.

Поделитесь в социальных сетях:FacebookTwitter
Напишите комментарий