Установка фрезерных станков на фундаменты.
Установку фрезерных станков на обычные фундаменты необходимо производить после затвердевания бетона. Перед установкой станка фундамент должен быть размечен по габаритным размерам станка в плане.
Из-за недостаточной плоскостности фундамента следует использовать металлические прокладки толщиной 3—10 мм или стальные клинья с уклоном 4—5° (рис. 65, а), количество и расположение которых указывается в чертеже. Обычно клинья рекомендуется устанавливать по периметру станины через 500—700 мм друг от друга.
Проверку горизонтальности станка в продольной и поперечной плоскостях выполняют по устанавливаемым в нескольких местах уровням и подбивкой клиньев добиваются, чтобы точность установки соответствовала нормируемой, т. е. 0,04 мм на 1000 мм длины станины.
Рис. 65. Регулировка положения станка на фундаменте:
а — вбиванием клина молотком, б — перемещением клина винтом; 1 — станина, 2 — клин, 3 — подошва клина, 4 — фундамент
Тяжелые фрезерные станки монтируют на башмаках (рис. 65, б), представляющих собой регулируемые винтом двойные клинья.
После окончательной выверки станков затягивают болты или под опорную поверхность станины заливают цементный раствор.
Фрезерные станки с ЧПУ, в том числе и фрезерно-сверлильно-расточные станки с ЧПУ и автоматической сменой инструментов (обрабатывающие центры), устанавливают на фундаменты с закреплением анкерными болтами или на виброопоры (легкие станки) (рис. 66).
Рис. 66. Установка фрезерного станка на фундаменте:
а — с креплением фундаментными болтами, б — на виброопоры
Рис. 67. Резинометаллические виброопоры:
а — равночастотная, б — упруго-жесткая; 1 — упорный винт, 2 — резьбовая регулировочная втулка
В настоящее время известно большое количество виброопор, различающихся материалом упругого элемента (резиновые, резинометаллические, металлические с пружинами из фетра, пробки и т. п.) и конструктивным решением. Среди резинометаллических опор наиболее распространенными являются равночастотные опоры ЭВ-31 и ОВ-33 (рис. 67, а).
Для равночастотных опор жесткость примерно пропорциональна нагрузке, и поэтому частота собственных колебаний станка мало зависит от нагрузки на опору. Это существенно упрощает подбор опор, так как не нужно вычислять опорные реакции от массы станка, а требуется лишь определить, не превышает ли нагрузка на опору предельно допустимую. Преимуществами равночастотных опор по сравнению с опорами с линейной характеристикой является и то, что изменение массы детали или перемещение тяжелых узлов станка не вызывает перегрузки опор. Поэтому один типоразмер может использоваться для установки разных машин.
Для изменения жесткости опоры в различных направлениях, а это особенно важно для станков с тяжелыми реверсируемыми узлами или работающих с ударными нагрузками, в опору можно вставлять специальный вкладыш. Виброопоры имеют устройство для выверки станка по уровню; для различных опор величина регулировки по высоте колеблется от 8 до 15 мм. Специальная конструкция нижнего основания опор обеспечивает хорошее сцепление с поверхностью пола
Специальная конструкция нижнего основания опор обеспечивает хорошее сцепление с поверхностью пола
Срок службы виброопор составляет не менее 10 лет
Специальная конструкция нижнего основания опор обеспечивает хорошее сцепление с поверхностью пола. Срок службы виброопор составляет не менее 10 лет.
Точность установки станка на резинометаллических опорах из-за ползучести резины с течением времени теряется. Для уменьшения потери точности на опорах следует закреплять контргайки, а через три-четыре дня после установки повторно выверять станки по уровню. Выверка станка производится при среднем положении подвижных узлов.
Станок, установленный на упругих опорах, может наклоняться при перемещении подвижных узлов. Поэтому при проверке установки станка на его соответствие нормам точности необходимо использовать два уровня — один устанавливать на недеформируемую часть станины для регистрации общего наклона станка на опорах, другой —на неподвижном узле станка. Выверка производится по разности показаний этих уровней.
При значительных углах наклона целесообразно применять упруго-жесткие опоры (рис. 67,б), позволяющие без изменения базирования станка быстро переходить от упругой установки к жесткой.
Это достигается вращением винта 1 до упора его в основание; регулировка по высоте выполняется вращением резьбовой втулки 2.
Источник
Кондуктор-шаблон для анкерных соединений
При заливке бетонного основания под металлические колонны используют специальный кондуктор, с помощью которого контролируется глубина и высота установки анкерных болтов. По сути, это своего рода шаблон для установки анкеров. Чаще всего изготовление кондуктора проводится из металла, на верхней поверхности которого нанесены риски для совмещения с осями и последующей проверке правильности установки с помощью теодолита. Отверстия для крепления болтов делаются в соответствии с диаметром анкеров.
Перед заливкой бетоном болты привариваются к арматурному каркасу основания, а после заливки бетоном, до того момента как он наберет свою техническую твердость проводится проверка правильности расположения болтов. Следующим этапом проводится контроль жесткости опалубки и анкеров. В завершении данной контрольной операции проверяется высотно-плановый показатель расположения.
Кондуктор-шаблон для анкерных соединений
Под тяжелые стальные конструкции используются тяжелые или усиленные варианты анкерных болтов. Размеры как диаметра болта, так его длины и шага резьбы существенно отличаются от легких анкерных соединений. Установка усиленных тяжелых болтов проводится с помощью шаблонов, в нужном положении до заливки основания бетоном. Для большей фиксации таких шаблонов используют дополнительную фиксацию каркасными стойками, придающих конструкции более жесткий вид.
После заливки бетоном, шаблоны анкерных болтов убираются, при этом, как правило, каркас остается на месте установки
При проведении этого этапа работ особое внимание уделяется правильному расположению болтов, обязательно контролируются буквально все параметры – высота, глубина вертикальность установки. Это один из самых трудоемких процессов, но от него зависит насколько верно проведено установка фундамента. Для облегчения работ на этом этапе используется несколько эталонных шаблонов-кондукторов
Сваренный из металлического швеллера или иного металлического профиля большой толщины с нанесенными координатами осей он должен обладать большой массой и жесткостью. В намеченных местах просверливаются отверстия под диаметр анкерных болтов. Для легких болтов, как правило, используется обычный деревянный брус
Для облегчения работ на этом этапе используется несколько эталонных шаблонов-кондукторов. Сваренный из металлического швеллера или иного металлического профиля большой толщины с нанесенными координатами осей он должен обладать большой массой и жесткостью. В намеченных местах просверливаются отверстия под диаметр анкерных болтов. Для легких болтов, как правило, используется обычный деревянный брус.
Перед установкой болтов проверяется правильность установки кондуктора. Он совмещается по осям координат, а по высоте устанавливается согласно меток, на стойках каркаса.
Расчет количества арматуры для фундамента
Не редко случается так, что арматуру привезли на строительный участок, а когда начинают вязать каркас, оказывается, что ее не хватает. Приходится докупать, платить за доставку, а это уже дополнительные расходы, которые в строительстве частного дома совсем не желательны.
Для того чтобы такого не случилось, необходимо грамотно произвести расчет количества арматуры для фундамента.
Допустим, у нас есть такая схема фундамента:
Давайте попробуем рассчитать количество арматуры для такого ленточного фундамента.
Расчет количества продольной арматуры
Для того, чтобы рассчитать необходимое количество продольной арматуры для фундамента, можно воспользоваться грубым подсчетом.
Для начала необходимо найти длину всех стен фундамента, в нашем случае это будет:
6 * 3 + 12 * 2 = 42 м
Так как у нас 4-х стержневая схема армирования, необходимо полученное значение умножить на 4:
Мы получили длину всех продольных стержней арматуры, но не стоит забывать, что:
При подсчете количества продольной арматуры необходимо учитывать запуск арматуры при стыковке, потому что очень часто случается так, что арматура доставляется на участок длинной стержня 4-6м, и для того, чтобы получить необходимые 12м, нам придется стыковать несколько стержней. Стыковать стержни арматуры необходимо внахлест, как показано ниже на схеме, запуск арматуры должен составлять минимум 30 диаметров, т.е. при использовании арматуры диаметром 12 мм, минимальный запуск должен составлять 12*30= 360 мм (36см).
Для того чтобы учесть этот запуск, существует два способа:
- Составить схему расположения прутов и рассчитать количество таких стыков
- Прибавить около 10-15% к полученной цифре, как правило, этого бывает достаточно.
Воспользуемся вторым вариантом и для того чтобы сделать расчет количества продольной арматуры для фундамента нам необходимо к 168 м прибавить 10%:
Это мы подсчитали количество только продольной арматуры диаметром 12мм, теперь давайте проведем расчет количества поперечных и вертикальных стержней в метрах.
Расчет количества поперечной и вертикальной арматуры для ленточного фундамента
Для расчета количества поперечной и вертикальной арматуры снова обратимся к схеме, из которой видно, что на один «прямоугольник» будет уходить:
0,35 * 2 + 0,90 * 2 = 2,5 м.
Я специально взял с запасом не 0,3 и 0,8, а 0,35 и 0,90 для того чтобы поперечная и вертикальная арматуры немного выходили за получившийся прямоугольник.
Важно: Очень часто при сборке каркаса в уже выкопанной траншее, вертикальную арматуру ставят на дно траншеи, а иногда еще и немного забивают ее в землю, для лучшей устойчивости каркаса. Так вот это необходимо будет учесть, и тогда нужно будет в расчете брать не 0,9м длину вертикальной арматуры, а увеличить ее примерно на 10-20см. Теперь давайте подсчитаем количество таких «прямоугольников» во всем каркасе, учитывая, что на углах и в месте стыковки стен ленточного фундамента будет по 2 таких «прямоугольника»
Теперь давайте подсчитаем количество таких «прямоугольников» во всем каркасе, учитывая, что на углах и в месте стыковки стен ленточного фундамента будет по 2 таких «прямоугольника».
Для того, чтобы не мучиться с расчетом и не запутаться в куче цифр, можно просто нарисовать схему фундамента и пометить на ней, где у Вас будут расположены «прямоугольники», затем подсчитать их.
Давайте для начала возьмем самую длинную сторону (12 м) и подсчитаем на ней количество поперечной и вертикальной арматуры.
Как видно из схемы у нас на стороне 12 м есть 6 наших «прямоугольников» и две части стены по 5,4 м, на которой будет располагаться еще по 10 перемычек.
Таким образом, у нас выходит:
6 + 10 + 10 = 26 шт.
26 «прямоугольников» на одной стороне 12 м. Аналогичным образом считаем перемычки на стене 6 м и получаем, что на одной шестиметровой стене ленточного фундамента будет 10 перемычек.
Так как 12-ти метровых стен у нас две, а 6-ти метровых – 3, то
26 * 2 + 10 * 3 = 82 штуки.
Помните, у нас по расчету на каждый прямоугольник выходило по 2,5 м арматуры:
Итоговый расчет количества арматуры
Мы определили, что нам необходима продольная арматура диаметром 12 мм , а поперечная и вертикальная будет диаметром 8 мм .
Из предыдущих расчетов мы выяснили, что продольной арматуры нам необходимо 184,8 м , а поперечной и вертикальной – 205 м .
Очень часто случается так, что остается много обрезков арматуры небольших размеров, которые никуда не подойдут. Учитывая это, необходимо покупать арматуры немного больше чем получилось при расчете.
Следуя вышеизложенному правилу, нам необходимо купить 190 – 200 м арматуры диаметром 12 мм и 210-220 м арматуры диаметром 8 мм.
Если арматура осталась – не переживайте, в процессе строительства она вам еще ни один раз пригодится.
Разные виды агрегатов
При устройстве фундамента под оборудование, необходимо понимать, что в настоящее время существует огромное количество разных машин, которые объединены в группы. Для каждой группы необходимо создавать основание по своим правилам и с разными требованиями.
В настоящее время существуют следующие виды групп, для которых нужно возводить отдельные фундамент.
- Агрегаты, у которых имеется криво-шатунный механизм. Сюда можно отнести поршневые компрессоры, лесопильные рамы и прочее.
- Отдельной группой выступают турбоагрегаты, к примеру, турбокомпрессоры.
- Некоторое электрическое оборудование, такое как моторы-генераторы также нуждаются в основании.
- Обустраивается фундамент под промышленное оборудование прокатного типа.
- Отдельной группой выступают станки для резки металла и прессы разного предназначения.
Допустимые отклонения от стройзадания.
Стройзадание является проектным заданием для разработки фундамента и определяет конструкцию только верхней части. Верхняя часть, поверхность для установки станка должна быть ровной, «гладкой», без уклонов и выпуклостей. Допустимые отклонения: – установочных поверхностей на фундаменте, возведенных до проектной отметки: По плоскости в любом направлении +-0,2/500 мм По высоте -5 мм По уклону 1/1000 мм Строители обычно творчески относятся к изготовлению фундамента, требования на чертежах не читают – а делают по сантиметровым строительным допускам
Внимание. Станок, установленный на полу при отсутствии фундамента без выверки по уровню и без крепления к полу, через короткое время теряет свою точность, изнашиваются направляющие и в результате станок требует ремонта
Подготовительные работы с опорами. Подготовка клиновых башмаков заключается в снятии консервационной смазки, краски и грязи с рабочих поверхностей, особенно обратить внимание на наклонные и прилегающие к станине. Смазка наклонных поверхностей консистентной смазкой. Установка клиновых башмаков в крайнее нижнее положение. Монтаж станка. Очистить нижнюю поверхность станины станка от консервации и грязи, особенно места прилегания клиновых башмаков. Установить станину станка на четыре вспомогательные опоры, расположенные по углам станины между анкерными колодцами фундамента, согласно документации так, чтобы отверстия в станине совпадали с центрами анкерных болтов в анкерных колодцах фундамента. Высота вспомогательных опор должна быть на 5 мм меньше высоты клиновых башмаков в нижнем положении. Собрать всю структуру станка (стойка, стол, шпиндельная бабка, магазин инструментов, телескопическая защита) и часть кабинета, которая не будет мешать заливке бетоном анкерных колодцев.
Установка и выверка станка. Установить стол станка по центру перемещений. Используя станочный уровень, установленный в центре стола в двух взаимно перпендикулярных положениях, выставить станок на четырёх вспомогательных опорах с точностью 0,1/1000 мм с помощью домкрата и стальных прокладок толщиной 0,5 – 1 мм. Используя анкерные болты с приваренными шайбами для поддержки клиновых башмаков, привернуть все клиновые башмаки к станине станка (см. чертёж). Площадь в плане анкерного колодца должна быть больше площади клинового башмака. Клиновые башмаки должны быть в нижнем положении. Залить анкерные колодцы водой для пропитки фундамента вокруг колодцев. Выдержать с водой 8 часов. Заполнить анкерные колодцы малоусадочным бетоном марки не ниже М300. Уплотнить вибратором и подлить вручную бетон под клиновые башмаки так, чтобы он стоял на щебне бетона и был залит по всей нижней поверхности башмака. Выдержать залитый в анкерные колодцы бетон 4 дня постоянно влажным для лучшего затвердевания. Ослабить крепёжные гайки на анкерных болтах. Поднять станок с помощью клиновых башмаков, чтобы убрать вспомогательные опоры. После 7 дней выдержки бетона, залитого в анкерные колодцы, можно выставить станину станка в горизонтальной плоскости в соответствии с сертификатом качества на данный станок с помощью домкрата, клиновых башмаков и станочного уровня 0,02/1000 мм. Верх фундамента между клиновыми башмаками заровнять цементным раствором и «зажелезнить». Окончательно затвердевший и выдержанный фундамент покрасить маслостойкой краской для предохранения от разрушающего действия масла и СОЖ. Произвести затяжку гаек на анкерных болтах динамометрическим ключом с моментом, указанном в таблице. При этом, следить за тем, чтобы уровень не изменял показаний при равномерном затягивании гаек.
Фундаменты для фрезерных станков, обрабатывающих центров, расточных и шлифовальных станков могут сильно отличаться по конфигурации и требованиям, будут рассмотрены в дальнейших статьях
Нормативные документы
Нормативные документы, которыми необходимо руководствоваться для демонтажа, такелажных работ, перевозки и монтажа и пусконаладки трансформатора:
ГОСТ12.3.009—76 «ССБТ. Работы погрузочно-разгрузочные. Общие требования безопасности»
Руководство по креплению технологического оборудования фундаментными болтами (СН 471-75)
ГОСТ 24379.0-2012.Болты фундаментные. Общие технические условия.
СНиП 3.05.05-84 Технологическое оборудование и технологические трубопроводы
ВСН 362-87 Изготовление, монтаж и испытания технологических трубопроводов до 10 МПА
ВСН 70-79 Инструкция по монтажу и испытанию трубопроводов диаметром условного прохода до 400 мм включительно на давление свыше 9.8 до 245 МПА
СН 527-80 Инструкция по проектированию стальных трубопроводов до 10 МПА
ГОСТ 21.401-88 Система проектной документации для строительства. Технология производства. Основные требования к рабочим чертежам
Сборник Е26 Монтаж технологических трубопроводов
Мы профессионально произведем такелаж токарного станка в Москве и Московской области, также у нас есть партнеры по Всей России и стран СНГ, а также сделаем демонтаж токарного станка, установим фундамент под токарный станок, осуществим ТО токарного станка и его модернизацию.
Фундамент для печи.
Разновидности фундаментов для печи:
- сплошной фундамент.
- столбчатый фундамент.
- смешанный.
Фундаменты должны быть шире основания печи на 5—7 см в каждую сторону.
Глубина заделки фундамента зависит от свойств грунта и уровня грунтовых вод.
Разновидности грунтов:
- скальные грунты
- крупнообломочные
- песчаные грунты
- глинистые
- суглинок
- суспесь
Скальные грунты – это сплошные прочные породы и некоторые осадочные породы: песчаники, известняки.
Они обладают высоким сопротивлением сжатию и стойкостью против грунтовых вод.
Крупнообломочные грунты – это обломки скальных пород.
Они тоже являются прочными основаниями, так как в этих грунтах имеется большое количество щебня, гравия и гальки.
Песчаные грунты – состоят из достаточно плотных и прочных частиц для устройства оснований под фундаменты печей.
Глинистые грунты – содержат в себе большое количество глины.
Глина в чистом виде в природе встречается очень редко, поэтому глинистым считается такой грунт, в котором содержится более 25% глины.
Суглинок – если в грунте глина содержится в пределах 10 – 25%.
Суспесь – грунт с содержанием глины до 10%.
Иногда встречаются грунты с крупными порами, которые опасны тем, что при попадании в них грунтовых вод они легко разжижаются и теряют прочность.
Чаще это насыпные грунты, которые имеют большую рыхлость.
В сухих песчаных грунтах глубина заложения фундамента может составлять 50 см, в глинистых — 75 см.
Грунт, на который опирается основание фундамента, называется его подошвой.
Во влажных грунтах глубина котлована от уровня земли должна быть не менее 1 м.
В прочных, сухих грунтах для печей массой до 2 т глубину заложения фундаментов можно уменьшить до 25 см, а для печей массой до 3 тонн до 40 см.
Во влажных грунтах глубину заложения фундаментов уменьшать не рекомендуется.
Материалы применяемые для устройства фундамента печи:
- Бутовый камень.
- Булыжный камень.
- Кирпичная щебенка всех видов.
- Гравий и галька.
- Глиняный обожженный красный кирпич.
- Угольный шлак.
- Кирпич железняк.
Для устройства фундамента в грунте отрывают котлован. Размеры котлована должны быть шире основания печи на 10—15 см в каждую сторону.
Ход работ по устройству фундамента.
- Вырыть котлован.
- Уложить материал (бутовый камень, кирпичную щебенку и т.д.) толщиной до 10 см.
- Залить жидким цементным раствором.
- Повторить укладку бута и заливку нужное количество раз.
- По верху фундамента в грунте настелить гидроизоляционный слой (3 слоя рубероида или толя).
- На гидроизоляционном слое возвести наружный фундамент.
Бутовый камень выкладывать соблюдая правила перевязки швов.
Промежутки между крупными камнями заполняем мелким камнем.
Таким способом фундамент доводим до уровня грунта.
Наружный фундамент можно выкладывать из тех же материалов, что и фундамент в грунте.
Высота кладки зависит от глубины подпольного помещения.
При кладке наружного фундамента из кирпича по краям кладут целые кирпичи, а в середину половняк.
Наружный фундамент должен быть меньше фундамента в грунте на 5 – 7 см во все стороны.
При этом, следует помнить, что площадка наружного фундамента должна быть шире основания печи во все стороны на 5 – 7 см.
Наружный фундамент не доводят до уровня пола на 14 – 15 см (на два ряда кирпичной кладки).
Пол вырезают по размерам основания печи.
Фундамент для печи.
По размерам основания печи, соблюдая правила перевязки швов, выкладывают один ряд кирпичной кладки.
После этого выкладывают второй слой гидроизоляции (два слоя рубероида или толя).
Второй ряд кирпичной кладки должен соответствовать уровню пола или быть выше, но не более чем на 3—5 см.
На этом кладка фундамента печи считается законченной, далее начинается кладка корпуса печи.
На скалистых и каменистых грунтах фундаменты в грунте не делают, а выкладывают наружный фундамент с поверхности грунта.
Для экономии строительного материала наружные фундаменты можно возводить на столбиках.
Ширина столбиков не менее 250 мм.
Расстояние между столбиками перекрывают железобетонными перемычками или железобетонной плитой.
Если расстояние между столбиками не больше длины двух кирпичей, то столбики можно соединить путем напуска кирпичей в сплошную плоскость фундамента.
Между фундаментами стен здания и печи оставляют осадочные швы толщиной 5 – 7 см, которые заполняют песком.
Осадочные швы оставляют из-за различной степени осадки стен здания и печи.
Типы фундаментов и их назначение.
Фундамент представляет собой бетонную, бутовую или кирпичную кладку, закрепляемую в грунте. Назначение фундамента — воспринимать нагрузки, возникающие в процессе эксплуатации оборудования. Кроме того, фундамент обеспечивает быструю, точную и надежную установку оборудования на рабочем месте. Площадь фундамента, его габаритные размеры и масса определяются соответственно опорной площадью, габаритными размерами и массой устанавливаемого на нем оборудования.
При установке оборудования на фундамент необходимо руководствоваться соответствующими инструкциями, монтажными чертежами, техническими условиями.
Для изготовления фундаментов используют бетон, железобетон, кирпичную кладку и бутовую заливку. В зависимости от способа изготовления различают сборные, сборно-монолитные и монолитные фундаменты.
В зависимости от конструкции фундаменты под установку промышленного оборудования могут быть ленточными, рамными, сплошными и массивными.
Ленточные фундаменты применяют для установки оборудования средней тяжести, которое в процессе эксплуатации не испытывает больших динамических нагрузок (например, роликовые и ленточные конвейеры, металлорежущие станки и автоматические линии, оборудование для деревообработки).
Рамные фундаменты представляет собой жесткую раму, опорные стойки которой установлены в специальные гнезда, выполненные в опорной плите, и жестко заделаны в ней, например, залиты бетоном. Площадка, на которой устанавливается оборудование, образована горизонтальными элементами рамы.
Сплошные фундаменты располагаются под всей площадью цеха; они представляют собой монолитную плиту или могут иметь коробчатую форму. Такие фундаменты применяют при установке оборудования легкого типа, не создающего в процессе эксплуатации значительных динамических нагрузок (например, насосы, вентиляторы, универсальное металлорежущее оборудование, компрессоры малой и средней мощности и т.п.).
Массивные фундаменты представляют собой бетонный или железобетонный массив, форма и габаритные размеры которого соответствуют габаритным размерам и очертанию опорной части оборудования, устанавливаемого на нем. В массиве фундамента предусматривают специальные отверстия и выемки для размещения и крепления частей оборудования, а также для доступа к его отдельным узлам и механизмам в процессе эксплуатации. Массивные фундаменты могут быть двух типов: подвальные и бесподвальные. Наибольшее распространение получили массивные фундаменты бесподвального типа, так как они проще в изготовлении и, соответственно, дешевле.
Бесподвальные массивные фундаменты применяют для оборудования, которое устанавливают на отметке чистого пола первых этажей промышленных зданий.
Подвальные массивные фундаменты имеют систему технологических подвалов, предназначенных для обслуживания оборудования в процессе эксплуатации.
Массивные фундаменты как подвального, так и бесподвального типа применяют для установки тяжелого оборудования, испытывающего большие динамические нагрузки (например, прокатные станы, кузнечно-прессовое оборудование).
Фундаменты группового и индивидуального типа
На сегодняшний день фундаменты под монтаж оборудования могут быть индивидуальные и групповые.
Что касается группового вида, то данный фундамент предназначается для размещения нескольких промышленных агрегатов легкого или среднего веса — до 8 тонн. При этом у них должна быть жесткая станина, нормальная точность работы, а эксплуатироваться они должны в основном в статическом режиме. Толщина обычно составляет от 150 до 250 мм. Жестко станиной считается та, у которой соотношение длины к высоте — не более чем 2 к 1.
Что же касается строительства фундамента под оборудование индивидуального типа, то в данном случае на основание устанавливается механизм, масса которого позволяет его отнести к среднему или тяжелому классу. Кроме этого, обычно такие механизмы характеризуются динамическими нагрузками среднего или значительного класса. Такое основание не только успешно гасит вибрации, но и изолирует агрегаты друг от друга
Это важно, так как в таком случае отсутствует колебания между ними
Можно добавить, что машины, которые имеют средний или легкий вес, а также характеризуются статическим периодом работы, нередко монтируются прямо на железобетонный пол или же перекрытие. Если необходимо такое основание, можно дополнительно усилить бетонной стяжкой, чтобы не заливать отдельный фундамент.
Фундаменты под колонны: виды оснований для железобетонных и металлических конструкций
Основой строительства любой капитальной постройки сегодня, независимо от того какое планируется его дальнейшее применение, является фундамент, тип и особенности которого зависят в первую очередь от типа грунтов на участке и той нагрузки, которая будет передаваться на него от остальных элементов здания.
Для устройства основания под такие специфические строительные элементы, как колонны в отличие от остальных видов конструкций применяются фундаменты, способные не только выдержать вес колон и остальных частей здания, но и обеспечить необходимую проектом заданную вертикаль.
Для выполнения этих задач в современных технологиях применяются два основных варианта устройства фундамента под колонные конструкции:
- монолитные основания;
- сборные фундаменты.
Виды фундаментов под колонны: слева — монолитный, справа — сборный
Оба варианта в основе своей имеют схожую конструкцию, выполненную из армированного железобетона. Такое исполнение позволяет надежно зафиксировать нижние точки опор в соответствующем положении. Отличие заключается в том, что каждый вид имеет свое направление применения:
- монолитные фундаменты более универсальны и могут использоваться как под железобетонные колонны, независимо от формы, так и под стальные или металлические;
- составные или сборные основания используются в основном под бетонные колонны.
Для обеспечения соединения колонн и фундаментов в одно целое, применяются два основных вида соединения:
- для железобетонных конструкций применяются метод вставки основания колонны в специально созданное углубление с последующей его фиксацией заливкой бетоном;
- для стальных элементов предусматривается соединения с помощью болтов. Такая конструкция, когда в фундаментном блоке заранее установлены болты под отверстия в основании колонны обеспечивает наиболее удобное соединение.
Изготовление фундаментов стаканного типа и основные требования к ним
При установке таких оснований нужно помнить, что прочность изделия может быть достигнута только за счет использования качественных строительных материалов и хорошего армирования. Поэтому железобетонный фундамент и отличается длительным сроком эксплуатации.
Установка колонны в стакан фундамента.
Этот тип основания редко используется в общем частном строительстве, потому что отличается высокой стоимостью и необходимостью использовать механизированную технику. Основание запрещено ставить на пучинистых и просадочных почвах. Технология предусматривает установку железобетонных опор и стоек в готовый стакан, в котором затем происходит фиксация.
Требования к фундаменту:
- Бетон должен соответствовать М200 и обладать степенью водонепроницаемости В2;
- Транспортировку стоек следует осуществлять на место строительства только после того, как основание наберет необходимый запас прочности;
- Следует обязательно выполнить армирование основания. Толщина слоя бетона вокруг армирования должна составлять не менее 30 мм;
- Обнаженная арматура – заводской брак, в строительстве использовать такие изделия категорически запрещено;
- Если в бетоне есть трещины с толщиной более 0,1 мм, то это также брак;
- Все производственные петли в блоках нужно аккуратно демонтировать, забивать их в бетон категорически запрещено.
Когда нужно обязательно использовать стаканный фундамент
- При строительстве промышленных и частных зданий общего назначения, в несущей конструкции которых используются бетонные опоры и стойки;
- При возведении электростанций, а также в атомной промышленности, при монтаже армированных стоек для машинных и конденсационных отделений;
- При проведении реставрационно-востановительных работ на стойках и колоннах в административных зданиях;
- Если проектом предусмотрено использование стоек как единственно возможной несущей конструкции здания.
Преимущества стаканных фундаментов
- Высокая прочность и качество заводских блоков, т.к. при их производстве осуществляется контроль качества и проверка на прочность и разрыв всех несущих элементов;
- Это оптимальное основание для строительства промышленных зданий, где присутствуют локальные нагрузки на единицу площади фундамента;
- Простая технология монтажа;
- Экономия сил и времени на возведении фундамента.
Также нужно учитывать необходимость транспортировки отдельных стоек и колонн непосредственно от производителя, а, учитывая их размеры, иногда приходится продумывать специальные маршруты следования.
Монтаж стаканного фундамента
Монтаж сборных фундаментов колонн массой от 5 до 30 т обычно производится стреловыми кранами.
Учитывая ключевые особенности рассматриваемых фундаментов, монтаж проводится только под непосредственным наблюдением специалистов. Только они способны контролировать весь процесс установки опор и правильность их армирования. В процессе монтажа, железобетонные изделия проходят несколько этапов:
- Подготовка поверхности. Ее тщательно выравнивают, т.к. смещение железобетонных балок в фундаментах стаканного типа крайне нежелательно;
- Подготовка углублений. Выкапываются на конкретную глубину, затем выполняется их укрепление гравием, тщательно трамбуются;
- Устройство железобетонного фундамента. На этом этапе также используется трамбовка грунта, а также происходит установка блоков.
Ключевая задача, которая стоит перед фундаментами стаканного типа – это обеспечение равномерного распределения нагрузок по всей поверхности почвы. Соответственно, использовать стаканные основания можно только на такой почве, которая способна выдержать большие нагрузки и не проседать со временем.
Разновидности фундаментов по конструкции и материалу
Фундаменты под фрезерный либо другой тип станков различаются конструкцией и используемым для их строительства материалом.
Основы под станок разделяют на две группы:
- первую, выступающую просто местом установки;
- вторую, служащую полноценным фундаментом, жестко связанным с оборудованием, например, с помощью болтового соединения.
Первое подходит под легкие механизмы. В его качестве часто выступает цементный пол, имеющийся либо незначительно усиленный, а также отдельные железобетонные плиты. Такая основа часто применяется в домашних условиях для монтажа оборудования.
В таблице далее представлены используемые на практике виды фундаментных конструкций.
Разновидность конструкции | Характеристика созданной основы |
основание плитного типа без подвала | возводится только на 1-м этаже, стоит дорого из-за большого расхода материалов и затрат труда, но хорошо гасит колебания своим большим весом |
рамная опора | устанавливается, начиная со 2-го этажа и способна выдерживать лишь статические нагрузки или минимальной величины вибрации |
стенчатая (представляет собой модификацию фундаментной ленты) | все воздействия при таком основании принимают перегородки и несущие стены, а строят его часто со 2-го этажа |
рамная конструкция с балочным ростверком | она способна выдержать значительные по силе высокочастотные вибрации, потому что могут быть установлены в опоры демпферы |
Наиболее совершенным вариантом является фундаментная конструкция, оснащенная пружинами. Они практически полностью гасят вибрации.
Материалом для опоры под шлифовальный (либо под любой другой) станок может служить:
- железобетонный монолит, образуемый путем заливки опалубки с установленным внутри арматурным каркасом;
- металлическая свайная конструкция с верхней связкой (рамным ростверком);
- железобетонные готовые блоки, связываемые между собой разными способами;
- одновременно метал и железобетон: бетонные блоки, сваи и металлический ростверк.
При заливке применяют бетон марки М200 (под легкое станочное оборудование) и выше. Крепежами служат как обычные анкера, так и химические.
Строительство фундамента под станок показано в видеоролике ниже.
Станочное оборудование различных моделей и предназначенное для разного вида работ предъявляет отличающиеся требования к фундаменту. В любом случае опорная конструкция должна соответствовать предъявляемым требованиям, тогда она прослужит долгие годы. При этом вибрационные воздействия на соседнее оборудование и само здание будут минимальными.